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The steric inhibition of resonance model has served as a rationalization for a wide 

variety of "anomalous" chemical and physical characteristics'. We have found that the magni- 

tude of methyl Cl3 - ' H coupling constants can be correlated with Hammett o constants in - 

substituted aromatic syatems2. In order to study the effect of steric hindrance upon this 

parameter in crowded aromatic systems, a series of ortho- and di-ortho- substituted dimethyl- 

anilines, dlethylanilines, and methylanillnes were obtained, and the Cl3 - H1 coupling constants 

for the N-methyl groups were determined (Table I). 

If the validity of the Fermi contact mechanism and the isovalent hybridization concept 

is accepted, a decrease in the N-methyl C 13 - H1 coupling is indicative of a decrease in the 

effective electronegativity of the alkylamlno nltrogen3. 

2,6-Dimethyl substitution in toluene, anisole, and N-methylaniline produces a decrease 

of s. 0.5 Hz in coupling constant relative to the unsubstituted parents; this effect is pre- 

sumed to be primarily an inductive one. Calogous substitution in the N,N-dlalkylanilines 

results in a decrease of at least 1.5 HE, of which approximately 0.5 Hz can be attributed to 

the "normal" electrical effect of 2,6-dialkyl substitution. Steric inhibition of resonance 

interactions of the type: 
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Table I. Methyl Cl3 - Ii1 Coupling Constants (iO.2 %)a 

Compound X Y J(CH3) 

Ii H 143.2 

C83 CH3 142.7 

4 

\/ cIljb 

Y 

H H 125.8 
125.4 
129.5 

G \ / N(%)2 

X 

4 r - N(CH2CH3)2C 

Y 

H H 134.5 
:3 

3 

c" 

3 

133.0 133.9 

22 H 

El5 '2;s 

132.9 133.9 

135.0 
Cl Cl 135.1 

M3 Cl 134.3 

H H 133.8d 

CB3 H 132.1d 

CH3 cH3 
131.7d 

a H 135.1 

cH3 
CH 

3 
134.65 

(a) The constants were obtained on a Varian A-60D spectrometer by 
standard sidebanding techniques using a Hewlett-Packard 200 CD 
oscillator and a 522B electronic counter. Each value is the 
average of at least five traces. 

(b) 0.30 ml or 0.30 g of solute/l ml of carbon tetrachloride 

(c) 0.50 ml or 0.50 g of solute/l ml of carbon tetrachloride 

(d) to.4 Hz 
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Table II. E-&thy1 Chemical Shifts (a) (*0.3 Hz) 

Compound X bwH3) A 
- 

II N(‘=$2 H 132.3 
1.0 

cH3 131.3 

III CH 
3 

6 

NH2 - 

X 

IV CH 
3 - 

X - 
V cH3 G CN 

- 

X 

X 

VI 
cH3 G H - 

X 

H 

cH3 

H 

CH3 

H 

CH3 

131.7 

127.6 
4.1 

147.8 
10.3 

137.5 

144.4 

138.6 

H 139.7 

CH3 133.8 

5.8 

5.9 

(a) 1% solutions in carbon tetrachloride 
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provides a rationalization for the remainder of this decrease. As the importance of resonance 

contributor Ib decreases, the effective electronegativity of nitrogen decreases with an 

accompanying attenuation of the C 
13 - Hl coupling constant. The coupling constants observed 

for the ortho-chloro derivatives of N,N-dimethylaniline can be explained in a similar fashion. 

The constant for the 2,6-dichloro derivative is only 0.6 Hz greater than that of the parent, 

whereas 2.6~dichlorotoluene and toluene differ by 3.7 Hz. 

Chemical shift data for aromatic methyl groups (Table II) provide further evidence for 

steric inhibition of resonance. The chemical shifts for those 2,6-dialkyl compounds having 

little or no ortho steric interaction (compounds III, V, and VI) are 4-6 Hz less than those of 

the unsubstituted parents. The 1.0 Hz difference observed in the N,N-dimethyltoluidines (II) 

is indicative of decreased resonance interactions, as is the 10.3 Hz difference for the 

nitrotoluenes (IV). 
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